New Delhi
08048046662
+919818085534

'extremely light weight'

Items tagged with 'extremely light weight'

68179d65be22ee500d53ff54 Card 2

product image
VACUUM PUMPS

For applications that demand the absolute highest standards of vacuum purity, stability, and speed, the Turbomolecular Pump (TMP) is the undisputed technology of choice. Operating in the high vacuum (HV) and ultra-high vacuum (UHV) regimes (down to $10^{-11} mbar), TMPs are the essential workhorses of the semiconductor, research, and analytical science industries. Dinesh High Vacuum Engineering (DHVE) delivers state-of-the-art Turbomolecular Pumps, combining high rotational speeds, advanced bearing technologies, and expert engineering to ensure a hydrocarbon-free environment for your most sensitive processes. I. ⚙️ The Core Principle: Momentum Transfer in Molecular Flow The Turbomolecular Pump functions as a highly specialized, multi-stage momentum transfer pump. It works on the principle that gas molecules, under the conditions of molecular flow, can be given momentum in a preferred direction by repeated collisions with a fast-moving solid surface. How the TMP Achieves UHV Molecular Flow: TMPs are effective only when the system is already at a low enough pressure (typically below $10^{-3} mbar) where the gas is in the molecular flow regime. In this regime, the mean free path of gas molecules is greater than the distance between the pump's internal surfaces. This means molecules collide primarily with the pump surfaces rather than with each other. Rotor and Stator Blades: The pump consists of multiple alternating stages of rapidly rotating rotor blades and stationary stator blades (or discs) that resemble a jet engine turbine. Rotor Action: The rotor blades, spinning at extremely high speeds (often 20,000 to 90,000 RPM), 'hit' gas molecules, imparting a downward momentum towards the pump's exhaust. The resulting velocity of the molecule is the sum of its thermal velocity and the rotor's blade velocity. Stator Action: The fixed stator blades act as baffles, preventing the now-accelerated molecules from moving back toward the inlet while directing them into the next stage of the rotor. Compression: This repetitive collision process, across many stages, successively compresses the gas until it reaches a high enough pressure to be efficiently removed by a backing pump (fore-vacuum pump), typically a dry screw or rotary vane pump. II. 💡 Modern Turbopump Design: Hybrid and Wide-Range Models Modern TMPs often feature a hybrid design to enhance performance across the pump's pressure range: Turbine Stages (Inlet): These stages, with finely pitched blades, are optimized for maximum pumping speed at very low pressure (molecular flow). Molecular Drag Stages (Exhaust): Located near the backing pump, these stages (e.g., Holweck or Siegbahn mechanisms) use rotating drums or discs with helical channels to actively drag gas molecules. They are optimized for higher compression ratios at higher pressures, which dramatically improves the pump's ability to handle the light gases (like Hydrogen and Helium) and allows for a smaller, more economical backing pump. DHVE specializes in Wide-Range TMPs that integrate these drag stages, offering a superior compression ratio, especially for light gases which often leak back through traditional pure turbine designs. IV. 🌍 Essential Applications for DHVE Turbomolecular Pumps The superior ultimate vacuum, clean operation, and high pumping speed make TMPs from Dinesh High Vacuum Engineering indispensable in the following critical fields: Semiconductor Manufacturing: Essential for demanding processes like PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), and ion implantation where even trace hydrocarbon contamination can destroy microchips. Analytical Instruments: Used in Mass Spectrometry (MS), Gas Chromatography-Mass Spectrometry (GC-MS), and Electron Microscopy (SEM/TEM) to create the ultra-clean vacuum required for particle beam generation and precision analysis. Research & Development: Critical for high-energy physics accelerators, space simulation chambers, and surface science experiments that necessitate extreme vacuum conditions (UHV). Coating Industry: Key for achieving high-quality, defect-free optical and thin-film coatings. Partner with Dinesh High Vacuum Engineering For over 30 years, Dinesh High Vacuum Engineering (DHVE) has been a trusted manufacturer in the high-vacuum technology space. Our Turbomolecular Pumps are engineered for demanding industrial uptime, minimal vibration, and unparalleled purity, ensuring reliable performance in your most sensitive vacuum processes. ➡️ Contact Dinesh High Vacuum Engineering today to discuss your specific UHV requirements and find the perfect Turbomolecular Pump solution for your application.

68179d65be22ee500d53ff54 Card 2

product image
VACUUM PUMPS

Dinesh High Vacuum Engineering (DHVE) In research laboratories, analytical facilities, and specialized clean manufacturing, the demand for a clean, quiet, and vibration-free vacuum is paramount. The solution lies in the meticulously engineered Dry Scroll Vacuum Pump. Operating completely without oil in the pumping chamber, this technology delivers the reliability and purity required for sensitive processes while maintaining an industry-leading low noise profile. Dinesh High Vacuum Engineering (DHVE) presents a range of compact, high-performance Dry Scroll Pumps—the ideal fore-vacuum (backing) pump for high vacuum systems and a superb standalone pump for medium vacuum applications. I. ⚙️ The Scroll Mechanism: Clean Compression in Action The Dry Scroll Pump is a type of positive displacement pump that utilizes a unique, elegant geometry to trap and compress gas. Its fundamental advantage is the oil-free operation achieved through the precise, non-contact movement of its key components. The Working Principle: Orbiting and Fixed Scrolls Fixed and Orbiting Scrolls: The core mechanism consists of two involute spiral-shaped scrolls: one is fixed (stationary) to the pump casing, and the other, the orbiting scroll (movable scroll), is driven by a motor to move in a tight, eccentric orbit. Gas Trapping and Compression: As the orbiting scroll sweeps through its cycle, it creates crescent-shaped gas pockets between the two scrolls. Gas enters at the inlet port on the outermost ring of the scrolls. The orbiting motion traps the gas and transports it progressively toward the center of the spiral assembly. As the gas moves inward, the volume of the crescent-shaped chambers continuously decreases, leading to compression. Exhaust: The highly compressed gas is finally discharged through a valve located at the center of the fixed scroll assembly to the atmosphere or a capture system. The Role of Tip Seals While the main scroll bodies do not physically touch (maintaining the dry compression volume), the tip seals—often made of high-performance polymer like PTFE—are critical for minimizing gas leakage back towards the inlet, ensuring a deep ultimate vacuum. DHVE selects only high-durability, low-wear materials for its tip seals to maximize pump lifespan and minimize maintenance needs. II. 🌟 Key Advantages of DHVE Dry Scroll Pumps The design benefits of the dry scroll pump translate directly into practical operational advantages for high-purity environments: 100% Oil-Free Vacuum: Eliminates the risk of hydrocarbon back-streaming or oil vapor contamination, which is critical for analytical and semiconductor applications. Ultra-Quiet and Low Vibration: Operating typically at below 55 dB(A) (often lower in standby modes), these pumps are ideal for laboratory benches, cleanrooms, and integrated analytical systems (Mass Spectrometry, Electron Microscopy) where minimal noise and vibration are essential. Compact and Lightweight Design: Their streamlined structure makes them easy to integrate into complex systems, cabinets, and portable vacuum units. Excellent Ultimate Vacuum: Capable of consistently achieving vacuum levels down to 10^{-2} to 10^{-3} mbar, making them suitable as a standalone pump for medium vacuum or as the perfect backing pump for Turbomolecular Pumps. Low Maintenance Requirements: With no oil to monitor or change, maintenance is dramatically simplified, largely limited to periodic tip seal replacement, resulting in higher system uptime. III. The DHVE Commitment to Clean Vacuum Dinesh High Vacuum Engineering is committed to providing robust, oil-free vacuum solutions that increase your efficiency and ensure process purity. Our Dry Scroll Pumps are designed for long service life, low energy consumption, and maximum reliability, reducing your total cost of ownership. ➡️ Upgrade your sensitive applications with DHVE's quiet, clean Dry Scroll technology. Contact Dinesh High Vacuum Engineering today for detailed specifications and expert consultation!

68179d65be22ee500d53ff54 Card 2

product image
VACUUM TURBO

Turbo Packages Turbo Vacuum provides economical solutions for simple-to-purchase, small, complete turbo pump systems, ready to use. These packages include turbo pump, integrated controller, power supply, air cooling kit, and connection cables. Features • Economical solutions • Reliable • Ready to use & simple • Dual voltage 90-240v • Units Provided as Complete Package TG60F TG 60 Technical Specifications Inlet Flange: KF40, ISO 63, CF 63 Pumping Speed, L/S (N): 60 Pumping Speed, L/S (He)): 55 Pumping Speed, L/S (H): 22 Ultimate Pressure (mbar): 10-9 Startup Time (min): 1.5 Rotational Speed (rpm): 80,000 Orientation: Any Backing Pressure (mbar): 6 Outlet Flange: NW 16 Weight (lb): 10 Controller: TC66 Complete System Price: $3,975.00 Ordering Information TG60FKAB-OEM TG60FRAB-OEM TG60FCAB-OEM TG240F TG 240 Technical Specifications Inlet Flange: ISO 100, CF 100 Pumping Speed, L/S (N): 240 Pumping Speed, L/S (He)): 160 Pumping Speed, L/S (H): N/A Ultimate Pressure (mbar): 10-10 Startup Time (min): 5 Rotational Speed (rpm): 48,000 Orientation: Any Backing Pressure (mbar): 6 Outlet Flange: NW 25 Weight (lb): 18 Controller: TC245 Complete System Price: $7,600.00 Ordering Information TG240FRAB-OEM TG240FCAB-OEM TV90I TV90i Technical Specifications Inlet Flange: ISO 63, CF 63 Pumping Speed, L/S (N): 90 Pumping Speed, L/S (He)): 90 Pumping Speed, L/S (H): 78 Ultimate Pressure (mbar): 10-10 Startup Time (min): 1.5 Rotational Speed (rpm): 72,000 Orientation: Any Backing Pressure (mbar): 14 Outlet Flange: NW 16 Weight (lb): 7 Controller: Integrated Complete System Price: $4,850.00 Ordering Information TV90I-SYS-ISO TV90I-SYS-CF TV250I TV250i Technical Specifications Inlet Flange: ISO 100, CF 100 Pumping Speed, L/S (N): 225 Pumping Speed, L/S (He)): 250 Pumping Speed, L/S (H): 210 Ultimate Pressure (mbar): 10-10 Startup Time (min): 2 Rotational Speed (rpm): 72,000 Orientation: Any Backing Pressure (mbar): 14 Outlet Flange: NW 16 Weight (lb): 13 Controller: Integrated Comp

68179d65be22ee500d53ff54 Card 2

product image
VACUUM CHAMBERS

Vacuum Chamber are Precise instruments for experimentation, powerful tools for productivity DHVE Vacuum Chambers provide the foundation for a broad range of systems, serving uses from scientific experimentation to industrial production. DHVE ’s vertically integrated engineering sales, design and fabrication method positions the company to respond to stock order and custom fabrication requirements promptly and cost effectively. Component and Package leak testing, degassing, vacuum process methods, altitude flight and deep space simulations; DHVE Vacuum Chambers serve as powerful and well crafted tools in countless sciences and industries. For more info visit us at www.vaccumpumpmanufacturer.com

68179d65be22ee500d53ff54 Card 2

product image
VACUUM PUMPS

In today's high-stakes manufacturing and processing environments, achieving a truly oil-free, high-efficiency vacuum is non-negotiable. Traditional pumps often introduce the risk of contamination, high maintenance burdens, and poor energy performance. Dinesh High Vacuum Engineering (DHVE) is proud to present its next-generation line of Dry Screw Vacuum Pumps—the definitive solution for applications demanding purity, precision, and the lowest possible cost of ownership. This detailed guide explores the superior technology, advanced features, and material science that make DHVE dry screw pumps the industry's gold standard. ⚙️ Technical Mastery: The Science Behind DHVE Dry Screw Pumps A dry screw pump is a masterpiece of precision engineering. Unlike wet pumps, which rely on lubricating fluids, the DHVE dry screw mechanism achieves its vacuum purely through mechanical action in an oil-free environment. The Core Mechanism: Non-Contact Compression The heart of the pump consists of two parallel, precision-machined helical screw rotors that rotate in perfect synchronization. Axial Gas Transport: As the rotors spin in opposite directions, the threads intermesh without making physical contact. This action traps process gas at the inlet and progressively transports it along the axis of the screws toward the exhaust. Internal Compression (Variable Pitch): DHVE models utilize a variable pitch screw design. This advanced geometry features a decreasing pitch (thread spacing) toward the discharge end. This progressive reduction in volume creates internal compression, which is a crucial feature: It minimizes the pressure difference between the last compression chamber and the exhaust, significantly reducing backflow leakage (or 'slip losses'). This results in higher volumetric efficiency and lower power consumption compared to constant-pitch designs. Gap Sealing: The vacuum is maintained by extremely tight, micron-level clearances between the rotors and the casing, and between the rotors themselves. This non-contact principle eliminates wear, ensures process purity, and is the foundation for the pump’s exceptional reliability. 🛡️ Corrosion & Contaminant Handling: Built for Harsh Environments The dry screw design inherently handles condensable vapors and particulates better than oil-sealed pumps. However, for the aggressive chemical and pharmaceutical sectors, DHVE offers pumps built with specialized material science to ensure longevity and zero failure. Advanced Materials for Chemical Resistance For applications involving highly corrosive gases like concentrated acids, solvents, and chlorides, Dinesh High Vacuum Engineering utilizes premium materials and coatings: Stainless Steel Rotors (316L and Duplex): For mild to moderately corrosive process streams, 316L offers excellent general resistance. For extreme environments, Duplex stainless steel (UNS S32205 / S32750) is utilized, providing superior resistance to pitting, crevice corrosion, and stress cracking, especially against chlorides and organic acids. Anti-Corrosion Coatings: The internal surfaces of the pump casing and rotors are often protected with thick, robust coatings such as Nickel Plating (ENP) or PEEK (Polyether Ether Ketone).14 These barrier layers prevent direct contact between the metal substrate and the aggressive process media. Gas Ballast System: Every DHVE dry screw pump is equipped with a gas ballast port. Introducing a small, controlled amount of inert gas (like Nitrogen) heats the pump and lowers the partial pressure of condensable vapors, ensuring they remain in the gaseous state and are safely expelled, preventing liquid condensation and subsequent corrosion. 🌐 Applications & Industrial Purity The unique combination of oil-free operation, VSD energy efficiency, and chemical resistance makes the DHVE Dry Screw Vacuum Pump the definitive choice across critical industries: Pharmaceuticals & Lyophilization: Guarantees absolute product purity, essential for drug safety and solvent recovery processes like freeze drying. Semiconductor & Electronics: Meets the stringent demands for ultra-clean vacuum required in PVD/CVD coating, etching, and load lock chambers. Chemical Processing: Reliable performance in challenging duties such as vacuum distillation, solvent stripping, and reactor service, backed by our corrosion-resistant material options. Ready to Optimize Your Vacuum Process? The decision to invest in a Dry Screw Vacuum Pump is an investment in process reliability, energy efficiency, and product purity. By choosing Dinesh High Vacuum Engineering (DHVE), you gain access to cutting-edge technology, expert application support, and a pumping solution engineered for decades of low-maintenance operation. ➡️ Contact Dinesh High Vacuum Engineering today to speak with one of our vacuum specialists and receive a quote tailored to your exact industrial requirements!

68179d65be22ee500d53ff54 Card 2

product image
VACUUM PUMPS

For rugged industrial applications requiring dependable performance in the rough to medium vacuum range (typically 10^{-1} to 10^3 mbar), the Piston Vacuum Pump remains a foundational technology. Known for its robust construction, deep vacuum capabilities for its class, and resilience in demanding environments, the reciprocating piston pump is a true industrial workhorse. Dinesh High Vacuum Engineering (DHVE) offers a comprehensive range of piston vacuum pumps, engineered to deliver high volumetric efficiency and sustained performance across diverse applications, from filtration to material handling. I. ⚙️ Principle of Operation: Positive Displacement with Precision The Piston Vacuum Pump belongs to the positive displacement family, utilizing a simple yet highly effective mechanical action to evacuate gases. The Reciprocating Mechanism Cylinder and Piston: The core of the pump consists of a cylinder in which a piston moves reciprocally (back and forth). This motion is driven by a crank-connecting rod mechanism linked to an electric motor. Intake Stroke (Vacuum Creation): As the piston moves away from the cylinder head (retracts), it increases the volume of the chamber. This expansion causes the pressure inside the cylinder to drop significantly below the pressure of the vessel being evacuated. The pressure differential causes the gas to be drawn into the cylinder through the suction (inlet) valve. Compression Stroke (Exhaust): Once the piston reaches its full retraction point, the suction valve closes, trapping the gas. The piston then moves forward, decreasing the volume and compressing the trapped gas. Discharge: When the pressure of the compressed gas reaches a point slightly above atmospheric pressure, the discharge (exhaust) valve opens, expelling the gas. DHVE offers both single-acting (evacuation occurs on one piston stroke) and double-acting (evacuation occurs on both strokes for a steadier flow) piston pump designs to meet specific flow rate and consistency requirements. II. 🌟 Key Advantages of Piston Vacuum Pumps The simple and sturdy mechanical design of the Piston Vacuum Pump offers distinct benefits in many industrial settings: Deep Rough Vacuum Capability: Piston pumps excel at achieving strong vacuum levels in the rough to medium range, often reaching $10^{-1} Pa (10^{-3} mbar) in multi-stage designs, making them highly efficient for batch processes. Rugged Durability: Constructed from durable materials like cast iron and specialized alloys, these pumps are built to withstand continuous, heavy-duty operation and maintain performance even in harsh, dusty, or humid industrial environments. High Volumetric Efficiency: Due to their robust seals and positive displacement nature, they maintain high pumping speeds across a wide range of operating pressures. Ease of Service: With a relatively simple and accessible mechanical layout, piston pumps are generally easy to maintain and service, leading to reduced downtime and lower long-term repair costs. III. DHVE Focus: Oil-Lubricated vs. Oil-Free Piston Pumps Piston pump technology comes in two main variants, each suited for different priorities: Oil-Lubricated Piston Pumps (DHVE Industrial Models): Features: Utilize oil to cool and lubricate the piston, cylinder walls, and valves, while also improving the seal for a deeper ultimate vacuum. They often include a Gas Ballast feature to prevent water vapor condensation. Ideal For: High-capacity industrial applications where maximum vacuum depth and durability are prioritized over absolute cleanliness (e.g., vacuum impregnation, drying). Oil-Free Piston Pumps (DHVE Laboratory Models): Features: Rely on specialized composite piston rings and cylinder materials to operate without oil. Ideal For: Small-scale, portable, or laboratory applications (e.g., suction, small-chamber evacuation) where the 100% oil-free discharge is critical, despite sacrificing some ultimate vacuum depth compared to lubricated models. Trust Dinesh High Vacuum Engineering for Industrial Vacuum When you choose a Piston Vacuum Pump from Dinesh High Vacuum Engineering (DHVE), you are selecting a solution backed by years of expertise in vacuum technology. Our piston pumps are designed for maximum efficiency, long operational life, and minimal need for servicing, offering you the lowest TCO in industrial rough vacuum. ➡️ Contact Dinesh High Vacuum Engineering today to consult with our experts on selecting the optimal Piston Vacuum Pump model and configuration for your heavy-duty industrial vacuum needs!

68179d65be22ee500d53ff54 Card 2

product image
DIFFUSION VACUUM PUMP

Diffusion Vacuum Pump With enriched industrial experience, we have been able to provide a wide spectrum of Diffusion Vacuum Pumps. Our given vacuum pumps are tested on diverse parameters of quality so as to ensure its flawlessness. These vacuum pumps are developed by our professionals, utilizing optimum quality material as per the set guidelines. Offered vacuum pumps are available in diverse specifications as per the need of patrons. Features: Consistent functioning Easy to operate Sturdy design Specifications: Power(W): 48 KW Voltage: 110 V

Still searching for
extremely light weight?