New Delhi
08048046662
+919818085534

'inbuilt device'

Items tagged with 'inbuilt device'

68179d65be22ee500d53ff54 Card 2

product image
VACUUM PUMPS

Liquid Ring Vacuum Pumps In the chemical, pharmaceutical, power, and food industries, vacuum processes often involve high volumes of condensable vapors, wet gases, or corrosive media. These challenging environments can quickly degrade and destroy traditional dry or oil-sealed pumps. The solution is the exceptionally robust and highly tolerant Liquid Ring Vacuum Pump (LRVP). Dinesh High Vacuum Engineering (DHVE) specializes in LRVPs, leveraging the unique properties of a rotating liquid seal to create a vacuum while simultaneously condensing vapors and scrubbing particulates. The result is a simple, durable, and highly reliable pump that is a cornerstone of process vacuum technology globally. I. ⚙️ The Liquid Ring Principle: Sealing with Fluid The Liquid Ring Vacuum Pump is a type of positive displacement pump that uses an internal sealing liquid (typically water, but often process-compatible solvents or oils) as the compressing element. The Simple, Robust Mechanism Eccentric Impeller: The pump features a multi-bladed impeller mounted eccentrically (off-center) within a cylindrical pump casing. The Liquid Ring: As the impeller rotates, the sealing liquid is thrown outward by centrifugal force, forming a rotating, concentric ring along the inner wall of the casing. This rotating liquid ring is the 'piston' that creates the vacuum. Gas Trapping and Compression: Because the impeller is mounted eccentrically, the space between the impeller blades and the inner surface of the liquid ring continually changes volume: Suction: As the impeller rotates away from the casing center, the chambers between the blades and the liquid ring increase in volume, drawing process gas through the inlet port. Compression: As rotation continues, the liquid ring moves inward toward the impeller hub, reducing the volume of the trapped gas chambers and compressing the gas (isothermal compression). Discharge: The compressed gas, along with a portion of the sealing liquid, is expelled through the discharge port. An external separator system captures the liquid for cooling and potential recirculation (partial or full recovery systems). II. 🌟 Superior Advantages of DHVE Liquid Ring Pumps The unique use of a liquid seal provides a distinct set of operational benefits that make the LRVP essential for difficult industrial duties: Exceptional Contaminant and Vapor Handling: The ability to handle high liquid carryover, condensable vapors, and even soft solids without damage is the defining advantage. The sealing liquid washes the pump's internals, preventing fouling and corrosion. Isothermal Compression: The continuous presence of cool sealing liquid absorbs the heat generated during gas compression. This results in an isothermal (constant temperature) process, which is safer for handling heat-sensitive and potentially flammable gases. Rugged Reliability & Durability: With only one moving part—the impeller—and no metal-to-metal contact between the impeller and the casing, the DHVE LRVP experiences minimal wear. This translates to exceptional operational uptime and significantly lower maintenance costs. Versatility in Sealing Fluids: The sealing liquid is often chosen to be compatible with the process gas. DHVE can configure systems to use water, mineral oil, or specific organic solvents, allowing the LRVP to be used for gas scrubbing and recovery simultaneously. Single- and Two-Stage Options: DHVE offers both single-stage pumps (for rough vacuum, down to approx. 35 mbar) and two-stage pumps (for deeper vacuum, typically down to 25 mbar), providing tailored performance for your specific pressure requirements. III. Designing Your DHVE LRVP System Selecting the correct LRVP system goes beyond just the pump. Dinesh High Vacuum Engineering provides complete systems that include: Material Construction: Pumps are available in Cast Iron (CI), Stainless Steel (SS 304/316), and specialized alloys to ensure compatibility with highly corrosive media. Seal Liquid Management: Choosing between Once-Through (single-pass), Partial Recirculation, or Full Recirculation (Closed-Loop) systems is vital for water conservation, heat dissipation, and environmental compliance. DHVE designs recirculation systems with heat exchangers and liquid separators for maximum efficiency. Performance Range: Single-stage pumps are ideal for applications near the saturation point of the sealing liquid, while two-stage systems offer better performance at deeper vacuum levels. Partner with Dinesh High Vacuum Engineering for Industrial Process Vacuum The Liquid Ring Vacuum Pump is the most reliable choice when facing dirty, wet, or corrosive process streams. Trust Dinesh High Vacuum Engineering (DHVE) to supply an expertly designed system that guarantees longevity, safety, and consistent performance, minimizing your environmental impact and maintenance budget. ➡️ Contact Dinesh High Vacuum Engineering today to configure a high-durability Liquid Ring Vacuum Pump system tailored precisely to your industrial process environment!

68179d65be22ee500d53ff54 Card 2

product image
VACUUM GAUGES

For modern vacuum systems requiring automated control, data logging, and high precision in the rough to medium vacuum range (999 to 10^{-3} mbar), the Digital Pirani Vacuum Gauge is the essential sensor. Unlike its analog counterpart, the digital Pirani integrates sophisticated electronics and microprocessors directly into the sensor head, providing enhanced stability, accuracy, and seamless integration into industrial control systems.1 Dinesh High Vacuum Engineering (DHVE) supplies advanced Digital Pirani Gauges, designed to meet the rigorous demands of automated industrial and laboratory processes. I. ⚙️ Principle & Digital Enhancement The fundamental principle of the Pirani Gauge—measuring pressure based on the thermal conductivity of the gas and the resulting change in the filament's electrical resistance—remains the same. However, the digital design enhances this measurement significantly: Microprocessor Integration: The sensor includes an embedded microcontroller that performs the complex functions of signal conditioning, linearization, and computation right at the source. Temperature Compensation: A key function of the digital circuitry is automatic temperature compensation. Since the filament's resistance is affected by ambient temperature changes, the microprocessor uses a secondary reference sensor to continuously correct the pressure reading, ensuring high accuracy and stability regardless of environmental fluctuations. Linearization: In the Pirani range, the relationship between pressure and resistance is inherently non-linear.4 The digital circuitry uses look-up tables or mathematical models to linearize the output signal, providing a smooth and highly accurate reading across the full range, especially at the transition point between rough and medium vacuum. II. 🌟 Key Advantages of DHVE Digital Pirani Gauges The integration of smart electronics provides several powerful operational benefits over traditional analog units: High Accuracy and Resolution: Due to advanced compensation and linearization, DHVE Digital Pirani Gauges offer superior measurement resolution and lower measurement uncertainty than standard analog devices. Seamless Digital Communication: Digital gauges are equipped with modern communication protocols (e.g., RS-232, RS-485, Modbus, or fieldbus) that allow for direct, noise-immune data transfer to PLCs, computers, and centralized control systems. This is vital for Industry 4.0 automation. Integrated Control Relays: Most digital units include built-in, user-configurable set-point relays.8 These relays can be programmed to automatically switch based on specific pressure thresholds (e.g., turning off the roughing pump or opening a high vacuum valve), simplifying system interlocks and safety mechanisms. Integrated Display: Many models feature a direct LED or LCD digital display on the sensor head, allowing local reading of the pressure value with high precision, complementing the remote electronic signal. Automatic Calibration: DHVE digital gauges often include features for automatic zero adjustment with the push of a button or via a remote command, simplifying maintenance and ensuring the gauge is always calibrated against a known reference. III. 🌍 Applications for Automated Vacuum Control The precision and connectivity of the Digital Pirani Gauge make it the preferred sensor for all automated and data-intensive vacuum processes: Automated Vacuum Coating (PVD/CVD): Precisely monitoring and controlling pressure during gas dosing and pump-down stages to ensure coating quality and batch consistency. Fore-Vacuum Interlocks: Providing the critical, highly reliable signal needed to safely switch on sensitive Turbomolecular Pumps or Roots Blowers when the required low base pressure is reached. Data-Intensive Research: Used in research facilities and universities for continuous, logged pressure data collection in experiments involving vacuum ovens, freeze dryers, and analytical instrumentation.10 Central Vacuum Systems: Monitoring and providing feedback for large, multi-user vacuum networks in manufacturing facilities or large research labs. Optimize Automation with DHVE Digital Sensors The Digital Pirani Vacuum Gauge from Dinesh High Vacuum Engineering (DHVE) is not just a sensor; it's a smart control component. It delivers the precision, stability, and connectivity required to optimize your pump-down times, protect your high-vacuum equipment, and fully automate your vacuum cycles. ➡️ Future-proof your vacuum system with advanced monitoring. Contact Dinesh High Vacuum Engineering today to integrate our high-precision Digital Pirani Gauges into your automated processes!

Still searching for
inbuilt device?